Oxidative addition of $\mathbf{O}-\mathrm{H}$ bond to a metal centre: synthesis and crystal structure of trans- $(\mathbf{P h O})(\mathbf{H}) \mathbf{P d}\left(\mathrm{PCy}_{3}\right)_{2} \cdot \mathbf{P h O H}$

Dario Braga, Piera Sabatino,

Cristina Di Bugno, Piero Leoni, and Marco Pasquali

Dipartmento di Chimira e Chimica hidustriale, Linmersita' di Pisa, shine fisa (ham)
(Receved August 12th. 1987)

Abstract

$\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\left(\mathrm{Cy}=\mathrm{C}_{6} \mathrm{H}_{11}\right)$ reacts with PhOH in toluene to give the phenoxopalladium(II) hydride derivative trans- $(\mathrm{PhO})(\mathrm{H}) \mathrm{Pd}\left(\mathrm{PC} \mathrm{y}_{3}\right)_{2}, \mathrm{PhOH}$; the erystal structural study has established that the oxygen of the phenoxy group forms a hydrogen bridge with an uncoordinated phenol molecule and has allowed direct location of the hydride atom ($\mathrm{Pd}-\mathrm{H} .1 .57(2) \mathrm{A}$).

The $\mathrm{H}-\mathrm{M}-\mathrm{OR}$ unit has several points of interest mainly arising from the simultaneous presence of the very reactive M-OR and M H bonds. Examples are: (a) the involvement of alkoxypalladium derivatives in the conversion of alkenes. carbon monoxide, and methanol into esters [1-4]; (b) the migratory insertion of CO into the $\mathrm{Th}-\mathrm{H}$ bond of the alkoxo-hydride derivative ($\eta^{6} \mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Th}(\mathrm{H})\left(\mathrm{OCH}-\mathrm{t}-\mathrm{Bu} u_{2}\right)$ to give an η^{2}-metal formy [5]: and (c) the intermediacy of alkoxo-hydride species in catalytic hydrogen tramser reactions $[6]$.

Formally $\mathrm{L}_{\mathrm{n}} \mathrm{M}(\mathrm{H})(\mathrm{OR})$ complexes can be directly derived by oxidative addition of alcohols to electron-rich transition metals, but there are sery few examples of preparation of alkoxo-hydrido derivatives either by this route or by other synthetic methods [5.8]. Possible reasons are that activation of the O H bond alcohols is difficult and that the electronic requirements of alkoxo and hydrido ligands are rarely compatible.

Here we report the synthesis and the crystal structure determination of trans$(\mathrm{PhO})(\mathrm{H}) \mathrm{Pd}\left(\mathrm{PC} y_{3}\right)_{2} \cdot \mathrm{PhOH}(\mathrm{I})$; this is the first determination for a complex containing both $\mathrm{Pd}-\mathrm{H}$ and $\mathrm{Pd}-\mathrm{OPh}$ units.

Complex I was obtained as a yellow crystalline solid by addition at room lemperature of PhOH to a toluene solution of $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}[9](2 / 1$ ratio) followed by precipitation with n-hexane at $-30^{\circ} \mathrm{C}$ (60 C vied) satisfactory analytical results

Fig. 1. The molecular structure of (I) showing the atom labelling. Only the H (hydride) and the H (bridge) are reported. Relevant bond distances (\AA) and angles $\left({ }^{\circ}\right)$ are: $\mathrm{Pd}-\mathrm{H}(1) 1.57(2)$ (by direct location, without full refinement), $\mathrm{Pd}-\mathrm{P}(1) 2.318(1), \mathrm{Pd}-\mathrm{P}(2) 2.330(1), \mathrm{Pd}-\mathrm{O}(1) 2.135(2), \mathrm{O}(1)-\mathrm{C}(1) 1.326(3)$. $\mathrm{O}(43)-\mathrm{C}(44) 1.369(5), \mathrm{P}(1)-\mathrm{Pd}-\mathrm{H}(1) 86(1), \mathrm{P}(2)-\mathrm{Pd}-\mathrm{H}(1) 76(1), \mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2) 161.9(1), \mathrm{H}(1)-\mathrm{Pd}-\mathrm{O}(1)$ 176(1), $\mathrm{Pd}-\mathrm{O}(1)-\mathrm{C}(1) 120.5(2)$.
were obtained for I. The main features of complex I were clarified by IR spectroscopy (Nujol mull): $\nu(\mathrm{Pd}-\mathrm{HI}) 2060 \mathrm{w}, 2040 \mathrm{w} ; \nu(\mathrm{C}=\mathrm{C}) 1605 \mathrm{~m}, 1585 \mathrm{~s} \mathrm{~cm}^{-1}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy ($\left[{ }^{2} \mathrm{H}_{8}\right]$-toluene, $10{ }^{\circ} \mathrm{C}, 300 \mathrm{MHz}$): $\delta 7.1\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right), 1.8$ ($66 \mathrm{H}, \mathrm{m}, \mathrm{Cy}_{3} \mathrm{P}$),$-17.5(1 \mathrm{H}, \mathrm{m}, \mathrm{Pd}-\mathrm{H})$; the shift of a signal from $\delta 8.4\left(-40^{\circ} \mathrm{C}\right)$ to δ $5.6\left(30^{\circ} \mathrm{C}\right)$ was clearly attributable to hydrogen bonding; this signal cannot be detected at $10^{\circ} \mathrm{C}$, probably because it falls under the multiplet of the aromatic protons, this accounting for the incorrect ratio between the proton sets. The exact nature of I was revealed by the X-ray structural determination. Crystal data: $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{OP}_{2} \mathrm{Pd} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \quad M=855.5$, triclinic, space group $P \overline{1}, a 13.535(6), b$ $16.131(4), c 11.759(5) \AA, \alpha 109.24(3), \beta 106.34(3), \gamma 84.21(3)^{\circ}, U 2325.98 \AA^{3}, Z=2$, $D_{\mathrm{c}} 1.22 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=916, \mu\left(\right.$ Mo $\left.K_{\alpha}\right) 4.94 \mathrm{~cm}^{-1}, \theta$ range $2.5-25^{\circ}$, final R value $0.033, R_{\mathrm{w}}=0.037$ for 6568 out of 8568 absorption-corrected independent reflections $\left[F_{0}>5 \sigma\left(F_{0}\right)\right.$] (transmission range $78-100 \%$). Intensity data were collected at room temperature on an Euraf-Nonius CAD4 diffractometer by the $\omega-2 \theta$ scan method. All non- H atoms were allowed to vibrate anisotropically. The H -atom bound to palladium(II) was found in a final Fourier difference map and in the refinement was fixed at the observed distance of $1.57(2) \AA$ from Pd, a similar procedure was used for the H atom of the phenoxide group, this atom being kept at a distance of $1.18(1) \AA$ from $\mathrm{O}(43)$. The remaining H atoms were added in calculated positions and refined riding on their respective C atoms. The structure was solved by Patterson methods; for all calculations the SHELX76 [10] package of crystallographic programs was used. The molecular structure of 1 is shown in Fig. 1. The palladium(II) atom possesses a severely distorted square planar coordination geometry. The two trans $-\mathrm{PCy}_{3}$ groups bend towards the H (hydride) atom
($\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2) 161.9(1)^{\circ}$) and appear to be "pushed away" from the phenoxyphenol coordination site. The very small deviations from the least-squares plane (max elevation $0.04 \AA$ for Pd) confirm that the main cause of deformation is the steric pressure exerted by the phenoxyphenol system. The main features of the structure of I are the unprecedented direct location of the hydride ligand and the phenoxy phenol coordination sysem. Although direct comparion with wher Pd H bond lengths is not possible. the observed distance of $157(2)$ A is in agreement with the values reported for some $\mathrm{Rh}-\mathrm{H}$ distances [1!] and with the sum of the Pd and H atomic radii. However, an anambiguous determmatoon of the H atom position would require a neutron diffraction study

The $\mathrm{Pd}-\mathrm{O}$ distance of $2.135(2) \mathrm{A}$ falls within the range ohserved for other Pd 0 bonds in square planar complexes [12].

The coordinated phenoxy group is found to form a hydrogen bond with a phenol molecule. Interestingly, also the H -atom in the bridge could be directy located from the X -ray diffraction experiment, the $\mathrm{O} \ldots \mathrm{H}$ O angle $\mathrm{is} 168.321^{\circ}$ and the H -bond is asymmetric with distance from the O (phenoxy) (l.46(1) A) longer than that from the O(phenol) atom ($1.18(1) \mathrm{A}$) It is noteworthy that ((1) appears to he displaced out of the plane orthogonal to the palladium(II) coordination square (as indicated by the torsion angles $\mathrm{P}(1) \mathrm{Pd}-\mathrm{O}(1) \mathrm{C}(1) 124.6$ and $\mathrm{P}(2) \mathrm{Pd} \mathrm{O}(1)$ (11$)-58.9^{\circ}$) because of the presence of the H -bridged phenol molecule.

Future work will be aimed at examining the reactivity of Pd H and Pd OPh bonds and the activation of the O. H bond of aliphatic alcohols

References

1 R.F. Heck, J. Am. Chem. So6. 94 (1972) 2712.
2 1) M. Fenton and PI. Steinward. S. Org Chem., 37 (1972) 2034
3 I Fuchikama, K. Ohish, and 1. Ojma, J. Org. Chem. 48 (1983) 380 a
4 H. Aper. B. Despeyroux, and J. Woell. Tetrabedron Iett. 24 (1083) 56 '9!.
5 K. (i. Moloy, and T.J. Marks. J. Am. Chem. Soe, 106 (1984; 7051. and ref therein.
6 R.A.W. Johmstone A.H. Withi. and I.D. Entwish Chem. Rev. 85 (1985129.
 M. Akyama, M.H. Chishom, F.A. Cotom. M.W. Extinc, D.A. Haitho I. Ieomelli abd D. Lite, I.

 M.L.H. Green J. Chem. Soc. (hem. Commun. 11975) 410

8 L.J. Newman and R.G. Bergman I. Am. Chem. Sos. 107 (1985) 5314, M.D. Fruak. M. ling lang. I
 Samner, and JE. Bercaw, O. Am Ohem. Soc. 98 (1976) 6733.
4 Imorg. Synth.. 19 (1979) 103.
10 Slfla7t by G.M. Sheldrick. Cnisemity of Cambuidge 1976.
11 R.G. Teller and R. Bau in: Sruciure and Bonding, Springer-Verlag Berlin Hedelberg. 44 (l981) 1.
12 P. Braunstein. D. Mata. Y. Dimamoy. I. Fischer. A. Mitsher and L. Ricard. I. Am. Chem. Soc. 10s

